In a nutshell: Inverse quadratic interpolation

Given a continuous real-valued function f of a real variable with three initial approximations of a root x_{-2}, x_{-1} and x_{0} where $\left|f\left(x_{-2}\right)\right| \geq\left|f\left(x_{-1}\right)\right| \geq\left|f\left(x_{0}\right)\right|>0$, rearranging them if necessary. If one is zero, we have already found a root. This algorithm uses iteration, quadratic interpolation and a solution to the quadratic equation to approximate a root.

Unlike Muller's method which approximates f, here we will approximate f^{-1}, and if x is a root, then $f(x)=0$; hence locally $f^{-1}(0)=x$.

Parameters:
$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the root cannot exceed this value.
$\varepsilon_{\mathrm{abs}} \quad$ The value of the function at the approximation of the root cannot exceed this value.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
3. If any two of $f\left(x_{k-2}\right), f\left(x_{k-1}\right)$ or $f\left(x_{k}\right)$ are equal return signalling a failure to converge.
4. If $\left|f\left(x_{k-2}\right)\right|>\left|f\left(x_{k-1}\right)\right|>\left|f\left(x_{k}\right)\right|>0$ does not hold, rearrange the values so as to ensure this is true.
5. The next approximation to the root be the quadratic polynomial that interpolates the three points $\left(f\left(x_{k-2}\right), x_{k-2}\right),\left(f\left(x_{k-1}\right), x_{k-1}\right)$ and $\left(f\left(x_{k}\right), x_{k}\right)$ evaluated at zero, so

$$
\begin{array}{r}
\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right) f\left(x_{k}\right) f\left(x_{k-1}\right) x_{k-2}+\left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right) f\left(x_{k-1}\right) f\left(x_{k-2}\right) x_{k} \\
\text { let } x_{k+1} \leftarrow \frac{+\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right) f\left(x_{k-2}\right) f\left(x_{k}\right) x_{k-1}}{\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)\left(f\left(x_{k-1}\right)-f\left(x_{k-2}\right)\right)\left(f\left(x_{k-2}\right)-f\left(x_{k}\right)\right)} .
\end{array}
$$

a. If x_{k+1} is not a finite floating-point number, so return signalling a failure to converge.
b. If $\left|x_{k+1}-x_{k}\right|<\varepsilon_{\text {step }}$ and $\left|f\left(x_{k+1}\right)\right|<\varepsilon_{\text {abs }}$, return x_{k+1}.
6. Increment k and return to Step 2.

Note that we can include a bracketing component this algorithm by always ensuring that two of the three points have opposite signs when f is evaluated at them. Then, when a root is found, a point can always be chosen to ensure that the root is still bracketed.

Convergence

If h is the error, it can be show that the error decreases according to $\mathrm{O}\left(h^{\mu}\right)$ where $\mu \approx 1.8393$ is the real root of $x^{3}-x^{2}-x-1=0$.

